
1

Animations Driving the Game Simulation

Jared Goronkin
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
jgoronkin@gmail.com

Abstract – This paper analyzes animation driven

game simulations as present in Dark Souls, where
gameplay parameters are modified directly through
animation data via metachannels. Unlike traditional
models that decouple animation and logic through
state machines or frame data, this approach allows
animations to drive the gameplay simulation,
consolidating the design pipeline and enhancing the
artist's expressive capabilities. Using tools like
DSAnimStudio to inspect .TAE files, the paper
explores the affordances and constraints of this design
pipeline compared to other traditional models for
animation integration.

1. Introduction

A key feature of many Action RPGs is that they are
comprised of a collage of disparate mechanics. Dark
Souls is a game that pushes back against this quality. In
Dark Souls, artistic and mechanical unity is prioritized
above all else. There is a glue, a singular subtle mechanic,
that strings almost everything else together. Not only does
it impact the end-user experience, but it’s a simple and
elegant piece of technology that has profound
implications in terms of the game development process as
well. Although there is no singular term for it, this
mechanic will be referred to here as an animation driven
game simulation. While Dark Souls did give rise to an
entirely new genre, and there have been many other
games that have implemented the same feature, it is still
rare to see it implemented so thoroughly and successfully.

2. Defining Animation Driven Game
Simulation

This mechanic is animation. Specifically, an
animation system crafted in such a way that the
animations themselves are the driving force behind the
game simulation. Animations are almost always designed
to communicate some state to the player; they
communicate the difference between jumping, and
performing a jump attack. (Swink p. 272) The game runs
the logic for handling an attack, and while that action is
being performed characters and the environment are
animated accordingly. Unlike most games, in Dark Souls
animations are prescriptive. When animations are driving
the game simulation, a barrier of communication between
the designer and the player is being torn down. The player
is experiencing the game simulation firsthand.

3. Animation Integrated in Other Games

In order to understand the affordances and constraints
imposed by such a mechanic, it’s worthwhile to first have
a general understanding of the standard ways of
implementing animation in games. In most games,
animations are handled separately from the actions an
entity can take. Two common approaches involve
animation state machines and frame data.

2

Figure 1: Animation State Machine Example (Unity
Technologies)

3.1 Animation State Machines

The standard process involves utilizing an animation
state machine. Game designers work with the software
engineers to craft the underlying gameplay simulation.
This includes implementing movement, attacks, and all of
the other interactions. This could be a variety of
subsystems, or a monolith, often including multiple state
machines. Parameters (such as velocity, movement state,
etc.) within these systems are exposed. At the same time,
animators create the necessary animations for the
characters and environment. The animation state machine
is used to tie the animations to the gameplay. Various
animation states are defined to communicate to the player
what gameplay state an entity is in. Transitions are
created between these various states utilizing the exposed
parameters of the gameplay systems. This often ends up
in the creation of an animation state machine that
attempts to mimic the entity's state. There are some
notable repercussions to this practice. For example this
opens up the possibility of a state machine to entity state
desync, often manifesting in a character stuck in a pose,
such as falling or T-pose . Despite the challenges, there
are benefits to this method, namely isolating animations,
the animation state machine, and the game logic from
each other. Each of these components fit nicely into a
microservices architecture affording the benefits and
drawbacks of such a structure.

Figure 2: Rivals of Aether Attack Windows (Mawral,
2020)

3.2 Frame Data

Defining actions via frame data is an alternative to an
animation state machine, which is often employed in hack
and slash, and fighting games. Frame data is a general
term for a data structure that holds all of the unique
parameters of an action. It often takes the form of a table
or a timeline, not unlike keyframe animations, where each
parameter has a specified period and start point defined in
frames. When an action is taken the parameters are
processed; this results in a wide variety of effects,
including the character playing out an animation. Often
the animation is stretched to the specified duration. This
method brings the underlying gameplay systems closer to
the animations. It’s perfect for fighting games where
precise balancing is essential. Animations still do not
impact the game simulation, but they do tend to be more
representative of the underlying process. Animations,
frame data, and gameplay systems are all still separated,
although there is some increased coupling between frame
data and gameplay systems.

3

 Dark Souls Attack.gif

Figure 3: DS Anim Studio Attack (Meowmaritus 2023)

3.3 Animation Driven Simulations

This is the technique employed by Dark Souls. Core
to animation driven game simulations is a technique
which is itself widely used. Instead of storing
game-specific information within the frame data, this data
can be directly encoded into metachannels within the
animation file. Jason Gregory (2018, p 746) states “It is
quite common to define a special channel that contains
event triggers at various time indices... Whenever the
animation’s local time index passes one of these triggers,
an event is sent to the game engine, which can respond as
it sees fit.” The key difference here is that it now falls on
the animators to define when and how these events
trigger. “One common use of event triggers is to denote at
which points during the animation certain sound or
particle effects should be played. For example, when the
left or right foot touches the ground, a footstep sound and
a ‘cloud of dust’ particle effect could be
initiated.”(Gregory, 2018, p 746) Dark Souls takes this
technique and applies it to weapon effects, animation
cancels and transitions, along with many other
parameters. This puts gameplay implementation directly
into the hands of the animators.

Figure 4: DS Anim Studio HitBox(Meowmaritus 2023)

DSAnimStudio by Meowmaritus (2023) is described

as a time act editor. This modding tool is used to both
visualize and edit .ANIBND files in Dark Souls. A single
.ANIBND file contains all of the .TAE files for a
character. .TAE is an animation file used by From
Software (the company behind Dark Souls) that combines
animations and events. Characters include variants, for
example the player and all NPCs are contained within the
same .ANIBND file. The .TAE files contain all of the
animations and animation events. There are many
different types of events, each event containing multiple
arguments to further specify the type of event that will
occur. These include the common features of playing
sound effects such as footsteps, as well as activating
gameplay events such as attack behaviors, parry
windows, and i-frames. (?ServerName?, 2023)

Game development is an art, just because multiple

processes could theoretically produce the same output
doesn’t mean that the processes are the same. Almost all
programming languages are Turing complete and could
theoretically be used for any application. The same
applies here as well. What is important are the practical
implications of such a mechanic. The affordances and
constraints of the animation driven simulation allows the
designers intentions to shine through.

3.4 Design goals of the mechanic

 The core of Dark Souls combat is positioning and
timing. Miyazaki, the director and producer of Dark

https://drive.google.com/file/d/14TIjFoxaGJcCriTJ01YpQAmV1e4-_Vd-/view?usp=share_link

4
Souls, has stated “Each weapon will have characteristics
that are vastly different from other weapons in the game.”
(Dark Souls Q&A, 2011) This is achieved through letting
the animations drive the game simulation. Something as
minor as changing a weapon's swing speed ends up
having an impact on the game. By fine tuning what events
activate and when, each weapon is given a unique
identity. Balance isn’t the goal for dark souls, as Miyazaki
explains, “We want to give players many options, even if
that means they use the sword that 'fits best in the hand.'
We want you to become emotionally and physically
attached to the weapon you're using.” (Dark Souls Q&A,
2011)

3.5 Affordances and Constraints

 When animations are driving the game simulation
animators become responsible for implementing
gameplay. They must work closely with designers and to
some extent become designers themselves. Consolidating
roles means fewer people need to be involved to make
gameplay changes. Faster iteration times opens up the
possibility for increased content and polish. This
ability to engage in rapid prototyping of weapons is
further enhanced by the modularity of the actions.
Any weapon can have its actions swapped out with
any other allowing for experimentation by designers,
this has been put to practice by the modding
community with tools like DSAnimStudio.

 The rapid iteration, along with the precision
with which events can be orchestrated, allows the
designers of Dark Souls to emphasize the basic
qualities of combat within a 3D space. Timing is
essential to combat, not fast reaction, but observation
and planning. The player must watch the enemies’ actions
and take advantage of openings, all while keeping in mind
the ranges of attacks, and how actions move the character.
The fun of weapons in Dark Souls is building an intuitive
sense for how they work rather than a logical
understanding. Miyazaki stated “Some players will say,

‘is this difficult to use? Leave it to me, I'll master it!’ The
mind games and strategising - that's the most fun aspect
of the game to me.” (Dark Souls Q&A, 2011)

 Actions have many events that fire off throughout
their duration. These events are so numerous and varied
that there is no way for a player to consciously identify
every detail of what is occurring. The effect can however
be felt and intuited. The actions are designed consistently.
Despite the combat bearing little resemblance to reality, it
feels realistic because the game world is following a very
specific set of rules that makes sense to the player.
Actions don’t function the way they do for the sake of it.
Each action exists to contribute to the game world.

4. Conclusion

Dark Souls combat, like other elements of the game,
is defined by its artistic consistency. By driving the game
simulation via animation, the various disparate mechanics
of the RPG are harmonized. The mechanics of the game
melt into the background of a greater immersive
experience.

5

References:

Dark Souls Q&A: Variety is the Spice of Death—Souls Lore. (2011, February 14). Retrieved September 16, 2023,

from http://soulslore.wikidot.com/das1-variety-is-the-spice-of-death

Gregory, J. (2019). Game Engine Architecture (Third Edition). CRC Press.

Mawral. (2020, December 13). RoA Workshop Guide: Explaining Attack Windows. Ko-Fi.

https://ko-fi.com/post/RoA-Workshop-Guide-Explaining-Attack-Windows-M4M72XOMP

Meowmaritus. (2023). Meowmaritus/DSAnimStudio [C#]. https://github.com/Meowmaritus/DSAnimStudio

(Original work published 2018)

?ServerName? (n.d.). TAE - Animation Events—Souls Modding. Retrieved September 18, 2023, from

http://soulsmodding.wikidot.com/format:tae

Swink, S. (2009). Game feel: A game designer’s guide to virtual sensation. CRC Press.

Unity Technologies (n.d.). Unity - Manual: State Machine Basics. Retrieved September 17, 2023, from

https://docs.unity3d.com/Manual/StateMachineBasics.html

http://soulslore.wikidot.com/das1-variety-is-the-spice-of-death
https://ko-fi.com/post/RoA-Workshop-Guide-Explaining-Attack-Windows-M4M72XOMP
https://ko-fi.com/post/RoA-Workshop-Guide-Explaining-Attack-Windows-M4M72XOMP
https://github.com/Meowmaritus/DSAnimStudio
http://soulsmodding.wikidot.com/format:tae
http://soulsmodding.wikidot.com/format:tae
https://docs.unity3d.com/Manual/StateMachineBasics.html
https://docs.unity3d.com/Manual/StateMachineBasics.html

	Animations Driving the Game Simulation
	1. Introduction
	2. Defining Animation Driven Game Simulation
	3. Animation Integrated in Other Games
	3.1 Animation State Machines
	3.2 Frame Data
	3.3 Animation Driven Simulations
	3.4 Design goals of the mechanic
	3.5 Affordances and Constraints
	4. Conclusion
	References:

