

Rochester Institute of Technology
B. Thomas Golisano College of Computing and Information Sciences

Master of Science in Game Design and Development

Capstone Final Design & Development Approval Form

May 07, 2025

Student Name: Jared Goronkin

Research Title:
The Utility of a Modular Framework:

Evaluating Mosaic for Game Development

Keywords:
Mosaic, Modular, Game Object Model, Ability System,
Character Controller

Presentation: https://youtu.be/ciGfz5IPof0

Sten McKinzie
Lead Capstone Advisor

Christopher Egert
Research Advisor

David Schwartz, Ph.D.
Director, School of Interactive Games and Media

https://youtu.be/ciGfz5IPof0

The Utility of a Modular Framework:
Evaluating Mosaic for Game Development

Jared Goronkin
Rochester Institute of Technology

School of Interactive Games & Media
B. Thomas Golisano College of Computing and Information Sciences

jgoronkin@gmail.com

Paper submitted in partial fulfillment of the requirements for the degree of Master of Science in Game
Design and Development

May 07, 2025

Abstract: This paper presents a taxonomy for
Mosaic, along with select Character Controllers and
Ability Systems. Mosaic is a lightweight package for
Unity that enables developers to create gameplay
features that are modular, allowing for scalable
development and the preservation of features across
projects. For the taxonomy ten architectural and
feature categories were chosen through an analysis of
the systems. This study evaluates Mosaic’s position
within the landscape of these various products, finding
that Mosaic prioritizes applicability, reusability, and
architectural clarity while forgoing out of the box
features. These tradeoffs make Mosaic particularly
suited to teams prioritizing custom behaviors, long
term maintainability, and the ability to create an ever
expanding cross compatible library of gameplay
features. This analysis contributes to an
understanding of how prioritizing modular design can
impact production, and outlines opportunities to
extend Mosaics capabilities.

1. Problem Statement

Mosaic is a modular game development framework
which I've developed to address inefficiencies in creating,
integrating, and managing gameplay features. While the
system has provided flexibility, productivity gains, and
collaborative benefits, to smaller projects, testing is
required to see if such results scale to larger productions.

This paper evaluates Mosaic’s real-world utility
within the context of the development of Echoes In The
Mists by Petrichor Studios. The goal is to determine
whether Mosaic effectively reduces development
complexity, enhances productivity, and supports
collaboration as claimed, and to identify any limitations
or challenges in its application.

2. Significance

The flexibility of a chosen game object model is
highly valued by developers. These early structural
decisions come with tradeoffs and can have far reaching
consequences throughout development impacting
everyone on the development team. Utilizing an object
oriented approach may make things easier to get started,
but can scale poorly when scoping up or pivoting the
project, sometimes requiring major redesigns. Utilizing an
Entity Component System (ECS) improves modularity,
but can increase the challenge of scripting minor features
for less experienced programmers and designers.
(Skypjack, n.d.)

These models are fundamental, rather than
introducing a new one, Mosaic offers a framework that
can work alongside these models that is targeted at the
game objects that are core to most games, that of the
actor. Mosaic breaks down the actor into truly modular
components both across actors, and across any games that
utilize mosaic, without requiring extra code to wire the
various components together.

By exploring mosaics strengths, weaknesses, and
solutions to challenging problems we can help further
guide its development, determine its real world value to
those in the industry, as well as help developers
streamline their development processes.

3. Background

Mosaic is a framework that sits just above the game
object model, and just below the character controller. By
extending Mosaic, developers can create fully modular
runtime features that are cross compatible across
completely different actors and even projects. These
features can include anything from movement, to attacks,
to skill trees, and scripted sequences.

When the development of Mosaic began, the validity
of the underlying concept would often be called into
question by those in the industry that I shared it with. The
sentiment has generally been something along the lines of
the sentiment expressed in a Stack Exchange thread from
2023 (Kevin). Often the responses were something along
the lines of “Well that would be amazing if it was
possible, but there must be a reason no one has done this
before.” Mosaic isn’t the first project to try to tackle
concepts like this, but it does approach it from a unique
angle, which I attribute to it finding success where others
haven’t as of yet. Mosaic wasn’t designed to provide
solutions for gameplay features, so there isn’t the sort of
fluff that similar systems employ. It was designed to
tackle the abstract problem of truly modular actors with
full cross compatibility while imposing no limitations on
their capabilities.

Figure 1: Mosaic Architectural Diagram
Systems that work with Mosaic can be broken down

into two categories. External systems reference and
interact with Mosaic through a single unified interface,
allowing them to interact with actors built with Mosaic in
an abstracted manner. Internal systems extend Mosaics
Modifiers, Modifier Decorators, and DataTags, affording
them all of the benefits of Mosaic.

Mosaic shares many similarities with the component
architecture and builds on the concepts to guarantee
interoperability across actors (Gregory, 2019).The Core
can be thought of as the container object, DataTags can be
thought of the container objects state, and Behaviors,
Modifiers, and Modifier Decorators, can all be thought of
as the components. In Game Programming Patterns,
Nystrom (n.d.) outlines some of the major challenges with
the component architecture, such as an inherent lack of
encapsulation of data which can cause issues with code
clarity and unnecessary memory usage. The benefit of
Mosaic over the standard component architecture is that
Mosaic solves all of these issues.

DataTags are essentially a dynamic type safe
blackboard. This allows components to share data,
without the risk of introducing bugs due to spelling errors,
while still being able to add new data types as needed.

One of the fundamental components of Mosaic are
the behaviors. Each behavior must be fully modular,
which requires a modular behavior selection algorithm. A

utility system was chosen due to both its simplicity, as
well as its ability to simulate any other behavior selection
algorithm with relative ease. (Daw et al., 2019)

Not all actor behaviors are stateful, some are
instantaneous, and some can persist for undetermined
amounts of time while overlapping other stateful and
non-stateful behaviors. Mosaic's solution to supporting
this type of behavior was heavily inspired by For Honors
modifiers. In For Honor Modifiers are used for everything
from adding visual flair to a character, to applying status
effects over time. (GDC 2025, 2019) Mosaic simplifies
this solution down to its fundamentals, improving
flexibility. Mosaic also includes a structure that allows for
the dynamic decoration of any modifier. This enables a
modular approach to reacting to and extending the
modifiers functionality, and is an essential part of
achieving full modularity and cross-compatibility.
(Gamma et al., 2016)

There are two main types of systems that could be
categorized as similar to Mosaic. That of ability systems
and character controllers. We will be taking a look at
three, the Gameplay Ability System (GAS) for Unreal, as
well as the Opsive and Invector character controllers.
GAS falls squarely into the category of a standalone
ability system, designed to be used alongside a character
controller or other system. Opsive is a character controller
with a built in ability system. Invector is a stand alone
character controller.

The Gameplay Ability System (GAS) was originally
developed for Unreal. It’s used in many games including
Fortnight, and is a free package. The main purpose of
GAS is to create abilities for games in a unified manner
with built in networking capabilities. This system does a
good job at modularizing features, although it does not
achieve full modularity. There is also a lot of prebuilt
functionality targeting conventional character driven
games. (Gameplay Ability System for Unreal Engine, n.d.
)The gameplay ability system also has a steep learning
curve. Mosaic is a much more lightweight framework,
allowing it to fit into more contexts, and also achieves full
modularity and cross compatibility.

There are various character controllers available as
packages on the Unity asset store such as Invector
(Invector, n.d.) and Opsive(Character Solution, n.d.).
These are hard coded solutions and broken up into pieces
to be sold. Unlike GAS, these solutions offer prebuilt
functionality and are very quick to set up. They are
however difficult to adjust and extend, relying on
utilizing and remixing existing features to achieve new
functionality. These add ons are not modular and often
require unique setup. Mosaic is much faster in terms of
new feature creation, with its modular data driven design.

4. Methodology

There isn’t anything out there that does exactly what
Mosaic does, but there are many products out there that
can help achieve similar things from the perspective of
various audiences. Identifying where this overlap occurs
will allow us to analyze the relevant features and identify
the strengths and weaknesses in regards to the various use
cases.

Adding anything to a project comes with a cost, so it
is essential that the benefits are tangible. Frameworks like
Mosaic are intended to improve development efficiency.
This research aims to outline the framework's strengths,
weaknesses, and potential applications through its
categorization.

This research focuses on the comparison of various
systems that fall into categories similar to gameplay
ability systems and character controllers (Ultimate
Character Controller n.d., Gameplay Ability System for
Unreal Engine, n.d.) The goal is to evaluate each system
against a set of traits relating to their usability and
architecture to better understand their utility in real world
production environments.

As of now, what Mosaic is, is not well defined. Three
systems were selected to be compared alongside Mosaic
based on their relevance, popularity, and architectural
variance.

● Mosaic
● Gameplay Ability System (GAS)
● Opsive Character Controller

● Invector Character Controller
A taxonomy of ten categories was developed to

assess the architectural features and utility of each
system.

4.1 Architectural Criteria

Reusability
● High: Features require no engineering to be

reusable
● Medium: Features require significant

modification & engineering to be reusable
● Low: Not supported

Modularity
How granularly the system is broken down into parts,

and how effectively those parts have been decoupled from
each other.

● Full: components are fully decoupled from each
other and external systems.

● Partial: the architecture encourages modular
coding practices, but relies on direct connections
to external systems.

● None: Systems are tightly coupled.

Prebuilt Feature Integration
● Seamless: External feature integration requires no

customization of assets
● Asset Coupled: External feature integration

requires customization of assets
● Code Coupled: External feature integration

requires modification of code

Custom Feature Development
● Easy: Custom features require minimal

integration;
● Challenging: Custom features require creative

problem solving
● Unsupported: Custom features are not supported

Codebase Scalability

● High: Encourages parallel development,
minimizes merge conflicts, separates
responsibilities.

● Medium: Works for small teams, shared resources
require careful planning to avoid conflicts.

● Low: High coupling and monolithic structures
make feature development and collaboration
difficult

Feature Criteria

Target User:
● Developers: Engineers directly implementing

gameplay subsystems.
● Designers: Team members who utilize the

developed systems to create experiences for the
player.

Networking Support
● Yes
● No

Character Controller
● Yes
● No

Ability System
● Yes
● No

Model Swapping
● Yes
● No
Each category's ratings were based on traits

observable through documentation and user experience.
The systems were analyzed through various means. A

thorough analysis of all systems documentation was done
in order to develop an understanding of their architecture,
use cases, and developer intent. Hands-on testing with the
software was done for Mosaic and GAS. The same was
not done for Opsive and Invector as they are both
expensive systems upfront, with many features locked
behind further paywalls.

Through the classification we can make informed
judgments to determine the practical uses of the various
systems.

5. Results

System Reusability Modularity
Prebuilt Feature
Integration

Custom Feature
Development

Codebase
Scalability

Mosaic High High Effortless Easy High

GAS Low High None Easy High

Opsive Low Low Low Limited Low

Invector Low Low Low Limited Low

Figure 2: Architecture Characteristics

System Target User
Networking
Support

Character
Controller Ability System Model Swapping

Mosaic Developer No No No No

GAS Developer Yes No Yes No

Opsive Designer Partial

(Add-on)

Yes Yes Yes

(Humanoid)

Invector Designer Partial

(Add-on)

Yes No Yes

(Humanoid)

Figure 3: Feature Coverage

5.1 Reusability

Mosaic was the best fit in regards to reusability due to
its ability to encapsulate gameplay logic, along with its
various features that allow systems extended from Mosaic
to be compatible across projects. Other systems scored
low, as this functionality would need to be custom built
by the developer when using these systems.

5.2 Modularity

Mosaic exhibited high modularity due its low
coupling between components thanks to both DataTags
and its modularized behavior selection algorithm. GAS
utilizes a similar layout, although is slightly less modular
in terms of the selection of its Gameplay Abilities. This
can lead to situations where the user compromises the
modularity of the system. GAS receives a medium score
for this category as this is a minor detail that could be
overcome by a more experienced developer. Opsive and
Invector both score low in terms of modularity, as the
only modular aspect of the design is their ability and
skills systems respectively.

5.3 Prebuilt Feature Integration

Mosaic was the only system to support effortless
prebuilt feature integration. Prebuilt packages containing
features for Mosaic can easily be imported into the
project like any other package. That is all it takes to fully
incorporate it into your project. From there the features
can be dropped onto any core. GAS received a score of
none as this is not a supported feature. Opsive and
Invector both receive a score of low, as the feature does
exist, but it requires a fair bit of setup. This setup often
includes automatic code generation and user modification
of the animator components.

5.4 Custom Feature Development

Mosaic and GAS both received a rating of easy for
this category. Both of these systems have been designed
from the ground up to support custom feature

development and have been proven to do so through
various projects. Opsive and Invector both receive a score
of limited as only a single aspect of these systems can be
extended to create custom features, and these are heavily
constrained to the capabilities of the systems.

5.5 Codebase Scalability

In terms of codebase scalability Mosaic receives a
score of High. Throughout the development of Echoes In
The Mists, at no point did the project ever suffer from
complexity creep due to the weight of its multitude of
systems. Mosaic allowed us to rush bad code out the door,
without any worry about far reaching consequences. All
of the rushed code was then able to be replaced with
engineered solutions without any hassle. GAS also
received a score of high. Its high scalability is evidenced
by its increasing popularity amongst large scale studios.
Opsive and Invector receive a score of low as their high
coupling and reliance on animators makes concurrent
development amongst programers very difficult.

5.6 Target Users

Mosaic’s target users are developers. While designers
are likely to become familiar with the utility Mosaic
affords them, it requires a developer to create the features
they will be interfacing with. The same goes for GAS.
Opsive and Invector are both targeted to designers, as
they are predominantly sets of completed gameplay that
can help designers get a kickstart on game development.

5.7 Networking Support

Out of the box, Mosaic does not provide networking
support. GAS provides full networking support for
systems designed with it. Opsive and Invector both
provide networking support, but as paid add ons. These
add ons are not guaranteed to be compatible with all of
their prebuilt features.

5.8 Character Controller

Mosaic and GAS do not provide character controllers,
rather leaving it up to the developer to add their own.
Mosaic could in fact encapsulate Opsive or Invector, and
use them as a specific behavior. Opsive and Invector are
both built to be character controllers.

5.9 Ability System

Mosaic does not provide the standard set of tools you
would expect an ability system to provide. Both GAS and
Opsive provide ability systems, although GAS is much
more robust. Invector provides what it calls a skill system
to add some extensibility, but this is not comparable to the
other offerings.

5.10 Model Swapping

Mosaic and GAS do not support model swapping, as
the model itself is not explicitly part of the system. GAS
provides gameplay cues which can be used for visuals,
but does not handle models. Opsive and Invector both
support model swapping with any humanoid rig.

Mosaic being the lightest-weight out of all offerings

in terms of code and features, is set apart by its high
reusability, and its effortless pre-built feature integration.
Mosaic scored high across the board in terms of
architecture characteristics, while at the same time
lacking all of the additional features similar systems
boasted. Mosaic was built from the ground up to allow for
cross compatibility between developer created features
and projects, whereas the other offerings were designed to
serve more specific game-development oriented purposes.
This makes Mosaic great for rapidly iterating through
features.

GAS does not support any pre-built feature
integration, so it does not support the preservation and
sharing of features between projects and developers. On
the other hand it does support both networking and a
robust ability system out of the box, giving it a head start
on that requires its base features.

Opsive and Invector share nearly identical feature
sets, and both target very similar use cases. The only
difference is the lack of an ability system for Invector.
Instead it has what it calls a skill system, which is the
only method for extending Invector and is less functional
than Opsives abilities. Both of these scored by far the
lowest in regards to architectural features. Opsive and
Invector are paid assets, with charges for additional
features. These both target designers rather than
programmers and are particularly useful as a starting
point for devs making games that match their supported
feature set.

6. Discussion

The taxonomy indicates that Mosaic occupies a
unique space in regards to gameplay systems. While tools
like Opsive and Invector offer an out of the box solution
for designers, Mosaic targets developers seeking full
control and modularity of their systems. Unlike GAS
which was designed to be as robust as possible, providing
solutions for specific genres, Mosaic embraces its
simplicity and modularity.

This makes Mosaic particularly useful for:
● Preservation and re-use of features
● Projects with non-standard requirements
● Developers making projects that need to scale

over time
● Communities and developers who would like to

share or monetize gameplay features.
Mosaics current usability is limited for:
● Designers who need pre-built features out of the

box
● Teams looking for a solution with built in

networking support

Mosaic’s high scores in architectural categories and

low scores in feature categories are a reflection of its
intended use case. Mosaic doesn’t provide features, it
provides the tools developers need to develop features
that are not only scalable, but fully cross compatible
across projects and teams that use the systems. Its lack of

networking, character controllers, and ability systems
isn’t necessarily a weakness, it reflects a philosophy of
not imposing structure unless absolutely necessary. This
narrower scope of concern even allows it to be more
easily integrated into an existing toolset, avoiding
duplication.

This analysis has highlighted a variety of areas of
growth for Mosaic.

● Visual Feedback Integration: A system akin to
GAS Gameplay Cues would help integrate the
visual style of assets into a given project.

● Model Swapping: Prebuilt systems for humanoid
model swapping, as seen in Opsive and Invector,
would make Mosaic features gameplay ready
with just drag and drop functionality.

● Networking Support: Enforced network support
for gameplay features would help immensely
with creating multiplayer experiences.

● Custom Editor Windows: Making Mosaic feel
as integrated as possible into the engine would
help drive developer confidence in the systems.

These areas highlight opportunities for Mosaic’s
evolution, without compromising on its simplicity or
modularity.

For developers, Mosaic offers a clean and powerful
foundation for building out their software architecture. Its
focused design allows for faster iteration, easy
onboarding, and a reduced technical debt as the projects
progress. It allows for the reuse of gameplay features,
turning the cost of developing a feature into an
investment in the studios feature library. This library can
either be used by the team, or sold to other developers and
hobbyists as a separate revenue stream.

Mosaic occupies a unique place in the market, and
opens new and unique opportunities that have yet to be
explored.

7. Conclusions

This research categorizes Mosaic alongside its closest
piers, that of ability systems and character controllers.
Using a Taxonomy of 10 architecture characteristics and

feature coverage, the findings highlight that Mosaic
targets a need not yet addressed by other products on the
market.

Compared to systems like Opsive, Invector, and GAS,
Mosaic takes a minimalistic approach, positioning it as a
framework that unifies the gameplay foundation layer,
allowing for both scalable development, and the
preservation and reuse of developer made assets.

The analysis suggests that Mosaic is best utilized by
teams who have technically skilled gameplay
programmers on their teams.

Future development of Mosaic may involve
extending mosaics built in capabilities for visual
feedback, networking support, and other features that
could broaden its utility without compromising the unique
position it currently holds in the market.

8. Future Work

This paper aims to quantify the utility of Mosaic by
creating a taxonomy around similar products such as
character controllers and ability systems. There is much
more to explore in terms of how systems like Mosaic can
impact the game development process, what we can learn
from them, as well as how these systems can be
improved.

Developer Feedback
These systems were analyzed through documentation

guided by some hands-on experience. Interview
developers and gathering feedback would add help
introduce a more human-centered perspective to the
research.

System Impact
Future work could analyze how these systems impact

development timelines, designs, and the technical
complexity across a variety of real world cases.

Potential Growth
This research brought to light potential areas of

improvement within Mosaic, such as visual effect
integration, such as Unreals Gameplay Cues.

References

Dawe, M., Gargolinski, S., Dicken, L., Humphreys, T., & Mark, D. (2019). Behavior Selection Algorithms. In S.

Rabin (Ed.), Game AI Pro 360 (1st ed., pp. 1–14). CRC Press. https://doi.org/10.1201/9780429055058-1

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (2016). Design patterns: Elements of reusable

object-oriented software. Addison-Wesley.

Gameplay Ability System for Unreal Engine | Unreal Engine 5.5 Documentation | Epic Developer Community.

(n.d.). Retrieved January 28, 2025, from

https://dev.epicgames.com/documentation/en-us/unreal-engine/gameplay-ability-system-for-unreal-engine

GDC 2025. (2019, August 2). Data-Driven Dynamic Gameplay Effects on For Honor [Video recording].

https://www.youtube.com/watch?v=JgSvuSaXs3E

Gregory, J. (2019). Game Engine Architecture. CRC Press, Taylor & Francis Group.

Invector. (n.d.). Third Person Controller—Basic Locomotion. Retrieved May 7, 2025, from

https://www.invector.xyz/copy-of-third-person-documentation

Kevin. (2023, September 7). Answer to “How are character controllers built upon complex gameplay systems?”

[Online post]. Game Development Stack Exchange. https://gamedev.stackexchange.com/a/207110

Nystrom, R. (n.d.). Component · Decoupling Patterns · Game Programming Patterns. (n.d.). Retrieved January 28,

2025, from https://gameprogrammingpatterns.com/component.html

Skypjack (n.d.). entt: Gaming meets modern C++—A fast and reliable entity component system (ECS) and much

more. (n.d.). Retrieved May 8, 2025, from https://github.com/skypjack/entt

https://doi.org/10.1201/9780429055058-1
https://dev.epicgames.com/documentation/en-us/unreal-engine/gameplay-ability-system-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/gameplay-ability-system-for-unreal-engine
https://www.youtube.com/watch?v=JgSvuSaXs3E
https://www.youtube.com/watch?v=JgSvuSaXs3E
https://www.invector.xyz/copy-of-third-person-documentation
https://www.invector.xyz/copy-of-third-person-documentation
https://gamedev.stackexchange.com/a/207110
https://gameprogrammingpatterns.com/component.html
https://github.com/skypjack/entt

Ultimate Character Controller. (n.d.). Opsive. Retrieved May 5, 2025, from

https://opsive.com/support/documentation/ultimate-character-controller/

https://opsive.com/support/documentation/ultimate-character-controller/

	Rochester Institute of Technology
	
	
	The Utility of a Modular Framework:
	Evaluating Mosaic for Game Development
	Jared Goronkin
	1. Problem Statement
	2. Significance
	3. Background
	4. Methodology
	4.1 Architectural Criteria
	5. Results
	5.1 Reusability
	5.2 Modularity
	5.3 Prebuilt Feature Integration
	5.4 Custom Feature Development
	5.5 Codebase Scalability
	5.6 Target Users
	5.7 Networking Support
	5.8 Character Controller
	5.9 Ability System
	5.10 Model Swapping
	6. Discussion
	7. Conclusions
	8. Future Work
	References

